Involvement of flap endonuclease 1 in base excision DNA repair.

نویسندگان

  • K Kim
  • S Biade
  • Y Matsumoto
چکیده

Base excision repair can proceed in either one of two alternative pathways: a DNA polymerase beta-dependent pathway and a proliferating cell nuclear antigen (PCNA)-dependent pathway. Excision of an apurinic/apyrimidinic (AP) site by cutting the phosphate backbone on its 3' side following incision at its 5' side by AP endonuclease is a prerequisite to completion of these repair pathways. Using a reconstituted system with the proteins derived from Xenopus laevis, we found that flap endonuclease 1 (FEN1) was a factor responsible for the excision of a 5'-incised AP site in the PCNA-dependent pathway. In this pathway, DNA synthesis was not required for the action of FEN1 in the presence of PCNA and a replication factor C-containing fraction. The polymerase beta-dependent pathway could also use FEN1 for excision of the synthetic AP sites, which were not susceptible to beta-elimination. In this pathway, FEN1 was functional without PCNA and replication factor C but required the DNA synthesis, which led to a flap structure formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long patch base excision repair with purified human proteins. DNA ligase I as patch size mediator for DNA polymerases delta and epsilon.

Among the different base excision repair pathways known, the long patch base excision repair of apurinic/apyrimidinic sites is an important mechanism that requires proliferating cell nuclear antigen. We have reconstituted this pathway using purified human proteins. Our data indicated that efficient repair is dependent on six components including AP endonuclease, replication factor C, proliferat...

متن کامل

AP endonuclease 1 prevents trinucleotide repeat expansion via a novel mechanism during base excision repair

Base excision repair (BER) of an oxidized base within a trinucleotide repeat (TNR) tract can lead to TNR expansions that are associated with over 40 human neurodegenerative diseases. This occurs as a result of DNA secondary structures such as hairpins formed during repair. We have previously shown that BER in a TNR hairpin loop can lead to removal of the hairpin, attenuating or preventing TNR e...

متن کامل

Human Fanconi Anemia Complementation Group A Protein Stimulates the 5’ Flap Endonuclease Activity of FEN1

In eukaryotic cells, Flap endonuclease 1 (FEN1) is a major structure-specific endonuclease that processes 5' flapped structures during maturation of lagging strand DNA synthesis, long patch base excision repair, and rescue of stalled replication forks. Here we report that fanconi anemia complementation group A protein (FANCA), a protein that recognizes 5' flap structures and is involved in DNA ...

متن کامل

Double-strand DNA break formation mediated by flap endonuclease-1.

Double-strand DNA breaks are the most lethal type of DNA damage induced by ionizing radiations. Previously, we reported that double-strand DNA breaks can be enzymatically produced from two DNA damages located on opposite DNA strands 18 or 30 base pairs apart in a cell-free double-strand DNA break formation assay (Vispé, S., and Satoh, M. S. (2000) J. Biol. Chem. 275, 27386-27392). In the assay ...

متن کامل

Trinucleotide repeat deletion via a unique hairpin bypass by DNA polymerase β and alternate flap cleavage by flap endonuclease 1

Trinucleotide repeat (TNR) expansions and deletions are associated with human neurodegenerative diseases and prostate cancer. Recent studies have pointed to a linkage between oxidative DNA damage, base excision repair (BER) and TNR expansion, which is demonstrated by the observation that DNA polymerase β (pol β) gap-filling synthesis acts in concert with alternate flap cleavage by flap endonucl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 273 15  شماره 

صفحات  -

تاریخ انتشار 1998